

FH WIENER NEUSTADT BIOTECH CAMPUS TULLN - Biotechnology & Digital Future -

Recovery Strategies for Textiles

Project Application Josef Ressel Center

Dr. Christian Schimper FHWN, Biotech Campus Tulln & Acticell GmbH

Recycling strategy of the EU: Road to 2030

• By 2030, the textile products placed on the EU market shall be

Durable

Repairable

Recyclable

Made of recycled fibers

Free of hazardous substances

Biotechnology & Digital Future

Recovery Strategies for Textiles

TEX2MAT Project

- 2017-2019
- Fiber to fiber recycling of textile waste
- Enzymatic separation of CO/PET textile material (1 of 5 Case studies)
- Thermal recycling of PET
- Initiation: ECOPLUS
- Project partners
 - 3 Universities
 - 3 Textile producing companies
 - 2 Recyclers
 - 2 Plastic processors

TEX2MAT Project

TEX2MAT Project

FH WIENER NEUSTADT BIOTECH CAMPUS TULLN

Biotechnology & Digital Future -

TEX2MAT Project

TEX2MAT Project

TEX2MAT Project

TEX2MAT Project

TEX2MAT Project

FH WIENER NEUSTADT BIOTECH CAMPUS TULLN Biotechnology & Digital Future -

Piribauer B. et al. Enzymatic textile recycling – best practices and outlook. Waste Management & Research.39(10) 2021

FH WIENER NEUSTADT

Recovery Strategies for Textiles

TEX2MAT Project

B. Piribauer et al. / DETRITUS / Volume 13 - 2020 / pages 78-86

Piribauer B. et al. Enzymatic textile recycling - best practices and outlook. Waste Management & Research.39(10) 2021

TEX2MAT Project

FH WIENER NEUSTADT BIOTECH CAMPUS TULLN - Biotechnology & Digital Future -

B. Piribauer et al. / DETRITUS / Volume 13 - 2020 / pages 78-86

Parameter	Maintained value
Pre-treatment	
Amount NaOH (20%)	10lkg ⁻¹ fibres*
Reaction time	1 hour
Temperature	Ambient
Enzymatic hydrolysis	
рН	5
Concentration of citrate buffer	50 mmol l ⁻¹
Hydrolysis temperature	55°C
Liquor ratio	>25g (cellulosic) fibres* per 1l water
Enzyme concentration	1 ml per 1 l water
Reaction time	<24 hours

Piribauer B. et al. Enzymatic textile recycling - best practices and outlook. Waste Management & Research.39(10) 2021

TEX2MAT Project

FH WIENER NEUSTADT BIOTECH CAMPUS TULLN - Biotechnology & Digital Future -

B. Piribauer et al. / DETRITUS / Volume 13 - 2020 / pages 78-86

Parameter	Maintained value
Pre-treatment	
Amount NaOH (20%)	10lkg ⁻¹ fibres*
Reaction time	1 hour
Temperature	Ambient
Enzymatic hydrolysis	
рН	5
Concentration of citrate buffer	50 mmol l ⁻¹
Hydrolysis temperature	55°C
Liquor ratio	>25g (cellulosic) fibres*
	per 1l water
Enzyme concentration	1 ml per 1l water
Reaction time	<24 hours

Biotechnology & Digital Future

Konsortium 2022: initiated by ECOPLUS

Salesianer MietTex GmbH

Textile Rental Services

SALESIANER

Starlinger & Co GmbH

Recycling Machinery Provider

Erema Group GmbH

Recycling Machinery Provider

HeiQ AeoniQ[™] ∞

HeiQ AeoniQ GmbH

Cellulose Fiber Producer

Acticell GmbH

Textile Chemical Formulator

Josef Ressel Center Application

- Host: University of Applied Sciences Wiener Neustadt
 - Biotech Campus Tulln & Campus Wieselburg
 - Project Lead: Dr. Christian Schimper
- Technical University, Vienna
 - Institute of Chemical, Environmental and Bioscience Engineering: Prof. Andreas Bartl
- University of Natural Resources, Vienna
 - Institute of Environmental Biotechnology: Prof. Georg Gübitz
 - Institute of Chemistry of Renewable Resources: Prof. Thomas Rosenau

BIOTECH CAMPUS TULLN
Biotechnology & Digital Future -

ReSTex

ReSTex

ReSTex

Callenges

- Sourcing:
 - Material availability
 - Sorting quality and quantity
- Upstream / downstream
 - Access to mechanical recycling
 - Separation of other fiber types
 - Textile dyes and auxiliaries
 - Conversion to yarns and textiles

