

aerospace & advanced composites

AEROSPACE & ADVANCED COMPOSITES GMBH

Fiber compounds: Simulation and Testing

27.4.2023 Fasern neu Gedacht | Wirtschaftskammer Österreich

Christoph Auner

Targeted Markets

Key areas of consulting, testing, research and development activities:

Space

- ESA Testhouse
- Material testing
- Flight hardware testing

Aeronautics

- Composite process development
- Anti-Ice coatings

Energy

- Solar Energy Modules
- Wind Energy Coatings

General Industry

Selected product development

Our product focus is on material testing and material development for highly specialized niches in Aerospace and terrestrial applications

Products and Services

Consulting

- Simulation
- Materials and processes

Testing

- Material and component level
- Customized testing in extreme environments

Development

Products and processes

Research

 Partner in national and international projects

Our product focus is on material testing and material development for highly specialized niches in aerospace and terrestrial applications

Cellulose Based Composites (CBC)–Areas of Application

Cellulose Based Composites

• Composition:

Combination of cellulosic fibers and a binder Fibers are a natural part of plants and consist of long chains of glucose molecules. Binder can be made of various materials such as resin, glue or natural rubber

• Advantages:

Good strength and rigidity while being lightweight Biodegradable depending on the resin used

Cellulose Based Composites – Application Based Resin Selection

Resin Selection

• Epoxy resin:

High strength & good adhesion to the cellulosic fibers Aircraft, construction and automotive industry

• Polyester resin:

Easy to process & good chemical resistance Widely used in boat manufacture and in the manufacture of moldings

• Phenolic resin:

High hardness & high temperature resistance Electronics industry

• Vinyl Ester Resin:

Similar to polyester resins but higher resistance to chemicals and moisture Waste water treatment or in the chemical industry

Cellulose Based Composites – Application Based resin selection

Biobased Resin alternatives for biodegradable Composites:

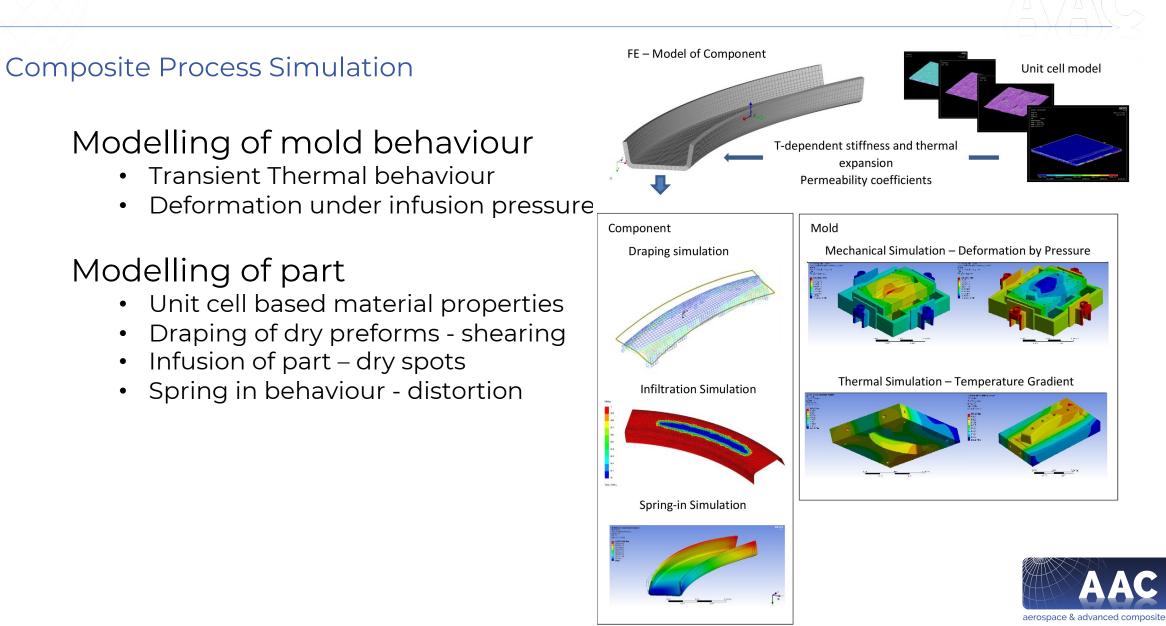
1. Starch:

Can be obtained from corn, potatoes or other plants Biodegradable

2. Lignin:

Waste product of paper manufacture Can be used as a binder for composite materials

3. Polylactic acid (PLA):


From renewable resources such as corn starch Particularly suitable for applications in the packaging industry.

4. Polyhydroxyalkanoates (PHA):

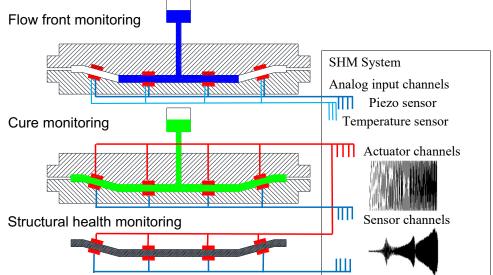
Produced by microorganisms Can be obtained from organic waste or plant materials

Simulation of Composites

Monitoring of Composites

Integrated Process and Health Monitoring

Sensor Development


• Integrated Piezo Temperature Sensor

Process Monitoring

- Change of impedance of piezo by resin
- Monitoring of resin front during infusion
- Monitoring of degree of cure

Health Monitoring

- Passive damage detection by acoustic emission
- Active damage detection of guided ultrasonic waves
- Compensation of thermal effects by temperature measurement

Cryogenic Testing of Composites

Composite Materials for Cryogenic Tanks

Monolitic composites

- Tensile
- In plane shear
- Compression
- Interlaminar Shear
- Bearing

Honeycombs

- Flatwise tensile
- Flatwise compression
- Shear

Mechanical Properties

from Cryogenic to High Temperatures

	<u> </u>
Property / Test method	Environment
Tensile testingTensile strengthYoung ´s Modulus	-269 1100°C
Compression tests Compression strength Compression Modulus 	-269 1100°C
Bending testsBending strengthBending Modulus3-pnt and 4-pnt bending	-269 1100°C
Charpy Impact Test	-196°C / RT
Fracture Mechanic Properties • KIC, KJC, J-Integral • Fatigue crack growth	-269 1100°C
Special Composite Properties • ILSS • Two Rail Shear • TestPicture frame test	-269 1100°C

Climate chamber

> LN2 cryostat -196°C

References

Industrial partners:

aerospace & advanced composites

Aerospace & Advanced Composites GmbH

A-2700 Wiener Neustadt Viktor Kaplan-Straße 2 Austria Tel.:+43 2622 90550-0 Email: <u>office@aac-research.at</u> www.aac-research.at

